
DISCUSSION 
The data in Fig. 1 show that, for a constant instilled concentration, 

aqueous humor levels decrease as the instilled volume is decreased. 
However, aqueous humor drug levels do not decrease in proportion to 
dose size. For example, decreasing the instilled volume from 25 to 5 pl, 
a fivefold dosage reduction, results in only about a twofold reduction in 
the area under the curve of aqueous humor concentration uersus time. 
Previous attempts a t  quantitation of pilocarpine uptake and distribution 
could not have predicted such an occurrence since available data on tear 
and instilled solution drainage were not quantitatively considered (1). 
The model developed here takes this factor into account and is, therefore, 
able to make reasonable predictions even when instilled volume and/or 
concentration are altered. 

As has been mentioned, the data from Fig. 1 imply that a considerable 
decrease in inst,illed volume coupled with a slight increase in instilled 
concentration should result in the same amount. of drug reaching the eye 
interior as if much larger volumes were administered. The dat.a of Fig. 
2 confirm this result, and Fig. 7 shows that t,he model also predicts it. I t  
is confirmed that the model is sensitive to changes in both instilled vol- 
ume and/or concentration. Such predictive capability has not previously 
heen available. 

Although the mathematics presented here are a simplification of the 
actual situation, the framework is now available that will allow refinement 
and addition of more sophisticated experimental data as they become 
available. Specifically, conjunctival absorption, protein binding, tissue 
distribution. and more mechanistic data on corneal absorption are 
needed. As such information becomes available, the treatment presented 
here can he relined to quantitate it. Furthermore, once all relevant pa- 
rameters have been identified, the model should lend itself to quantita- 
tion of other ophthalmic drugs in addition to pilocarpine. 
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Abstract u A method for evaluating the passive permeability and sin- 
gle-step Ihetabolism of drugs in suspension cultures of mammalian cells 
was formulated assuming linear kinetics. I t  was assumed that the me- 
tabolizing enzymes are driven by endogenous substrates present in 
steady-state quantities. The presence of the drug in radiolabeled tracer 
quantities was assumed to cause only a small perturbation from the en- 
dogenous steady-state operating point. The time course solutions for the 
drug and its metaholite are given in terms of macroscopic constants, and 

~~ ~~ 

their physical interpretations are given in terms of metabolic and 
transport parameters. 

Keyphrases Drug transport kinetics-evaluated in suspension cul- 
tures of mammalian cells, equations derived Metabolism, single 
step-evaluated for drugs in suspension cultures of mammalian cells, 
equations derived Kinetics-drug transport and concurrent metabo- 
lism in suspension cultures of mammalian cells, equations derived 

The study of drug kinetics a t  the cellular level represents 
a microcosm of the traditional field of pharmacokinetics. 
Such a study, which includes cellular absorption, elimi- 
nation, and metabolism in uitro, might be regarded as 
academic and possibly not as relevant as clinical studies 

in uiuo. However, the ultimate resolution of the cancer 
problem and certain persistent viral infections may depend 
on knowledge of chemotherapy and kinetics a t  the cellular 
level. If the tumor problem is epigenetic and potentially 
reversible, as some investigators believe (l), then the ab- 
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errant neoplastic state would not represent a mutation of 
genetic material but rather a persistent alteration in ge- 
netic expression that  might be amenable to  control by a 
new class of chemotherapeutic agents acting a t  the cellular 
level. 

BACKGROUND 

Although current understanding of the molecular biology of the tumor 
cell is insufficient to define the nature of the “persistent switches” that 
determine dedifferentiation and tumorigenesis, the interactions of the 
virus with the human host cell are understood to such a degree that 
modern antiviral therapy has “come of age” (2). I t  was only 17 years ago 
that many inv&igators believed that the viral and cellular processes were 
so similar that it would not he possible to design agents to distinguish 
between them. For these reasons, transport and metabolism a t  the cellular 
level must he evaluated. 

The thyniidine incorporation rate into DNA does not reflect accurately 
the DNA synthesis rate (3-5). One possible reason for this discrepancy 
is that the uptake rate of the precursor is rate limiting for its incorporation 
into the macromolecule in question (3 ,6 ,7) .  The simultaneous transport 
0 1  precursors and the biosynthesis of macromolecules in isolated chlo- 
roplasts (8) and Escherichia coli B (9) were examined in suspension 
systems. No attempt. was made to determine the limiting step in the in- 
corporation of the precursors into the macromolecule. 

Rashevsky (10) derived an expression for the total diffusional resis- 
tance of a spherical cell using an implicit assumption that the partition 
coefficient between the cell interior and the external medium is unity (11). 
Hearon (12) noted that Rashevsky’s treatment assumed that the me- 
tabolism rate is the same a t  every point in the cell and that the average 
metabolism is different from zero. Since the cases considered by Rash- 
evsky (10) and Hearon (13) were the zero- and first-order situations for 
the metabolism rate, Q, Best (11) stated that the actual Michaelis- 
Menten kinetics will he bound by these two cases. 

Blum and Jenden (14) considered this same problem. To obtain the 
concentration profiles in an intermediate range, they expanded the me- 
tabolism rate factor, Q, by a first-order Taylor series and found an ex- 
pression for the volume-averaged concentration inside of the cell. In their 
derivation, the value of C’, the value of the substrate about which the 
expansion was taken, was arbitrary and was chosen to suit a particular 
situation. 

Several expressions were derived to evaluate diffusional and biosyn- 
thetic parameters from experimental data. Best (15) derived an equation 
for a spherically symmetric metabolizing cell which accounts for transport 
and metabolism under the “quasisteady-state” assumption (when the 
metabolism rate and the transport rate are equal). The partition coeffi- 
cient between the cell and the external medium was assumed to be unity, 
as in the treatment of Rashevsky (10). Best (161, using baker’s yeast, 
evaluated the parameters for sucrose-invertase and glucose-hexokinase 
systems at  different temperatures with nonlinear regression analysis. In 
the following discussion, the biosynthetic parameters and the transport 
parameters will be considered from temporal data. 

THEORETICAL 

Biosynthetic-Transport Model-Consider the one-step conversion 
of a drug, A ,  into a product, P ,  inside the spherically symmetric cell in 
a suspension culture. Scheme I depicts the model subsystem of an en- 

\ A E L L  
M E M B R A N E  

Scheme 1 

dogenous biosynthetic pathway that will be considered in this study. In 
this case, P, is the terminal product of a biosynthetic pathway that may 
be sensitive to feedback inhibition. If A ,  and Po are the total amounts 
of drug and product, respectively, in the fluid compartment, if A, and 
P, are the total amounts of drug and product, respectively, inside the cell, 
and if X is the total amount of intermediate complex formed by enzyme 
E with drug A ,  then Scheme I may be represented by the reaction chain 
shown in Scheme 11. 

ki k3 k 5  ks 

kz k r  k? 
A , ~ A , + E ~ X - E + P , + P ,  

Scheme I I  

This five-compartment system contains two physical and three 
chemical compartments. The physical compartments are due to the ex- 
ternal fluid, denoted by the subscript o, and the cell interior, denoted by 
the subscript i, of the spherically symmetric cell in suspension; the 
chemical compartments are due to the three distinct chemical species 
A,  X ,  and P .  In this model, the formation of P, is assumed to be irre- 
versible, and the enzyme reactions are homogeneous in the cell. 

The basic differential equations for this system are: 

dA,/dt  = -k lA,  + kzA, 

dA,ldt = -kzA, - k a A ,  + klA,  + k4X 

d X l d t  = -(k4 + k5)X + ksEA, 

dP,ldt = - k d :  + k5X + k7P0 

dP,ldt = -k7Po + kGp, 

(Eq. 1) 

(Eq. 2) 

(Eq. 3) 

(Eq. 4) 

(Eq. 5) 

The transport parameters kl ,  kz, 126, and k7 are derivable from physical 
considerations, and they can be determined from independent experi- 
ments where biosynthesis is not a factor. This fact is important because 
once kl ,  kz, k6, and k7 are determined, the only rate constant that remains 
to be evaluated from the simultaneous biosynthetic-transport situation 
involves the biosynthetic process inside the cell. If it is assumed that the 
rate of change of X is much slower than that of A, or PI,  Eq. 3 can be 
written after allowing for a brief, but negligible, induction period: 

0 = -(k4 + k5)X + k3EAl 

or: 

X = IkaI(k4 + k5)lEAl 

If K ,  is defined aa: 

K ,  = (kd + k5)/k3 

then Eq. 7 becomes: 

X = K,-lEA, 

Substituting Eq. 9 into Eq. 2 yields: 

d A J d t  = -kzA, + klA,  - k3EAl + k4Km-’EA, 

or: 

dAtldt = -kzA, + klAo + (krKm-’  - k3)EA, 

However, since E = E ,  - X ,  then: 

E = E,  - K,-‘EA, 

where E,  is the total amount of enzyme in the cell, and: 

E = Eol(1 + A,/Km) 
Using this expression for E in Eq. 11 yields: 

Since: 

k4Km-I - k3 = k3k4/(h4 + k5) - k3 = -k5Km-l  

and: 

Vm kSE, 

by definition, Eq. 14 becomes: 

dA,ldt = klA,  - kzA, - V m A , / ( K m  + A , )  
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Aie Aie + Ai*lSao Ai 

Figure 1-Perturbation of an enzyme system from the operating point 
(A,,, Vie). 

Similar considerations applied to Eq. 4 give: 

dP,ldt  = -ksP, + k7Po + V m A , / ( K ,  + A , )  (Eq. 18) 

Equations 1, 5, 17. and 18 completely describe the reaction chain of 
Scheme I1 when the steady state for the enzyme-substrate complex, X ,  
is assumed. 

Model Modified for Tracer Analysis-If it is assumed that the en- 
zyme that metabolizes drug A is normally being driven by an endogenous 
substrate, A,,,  then the drug will add a substrate load on this enzyme 
which might be thought of as a perturbation on Ai,. 

If A is the total amount of drug in the cell suspension system (the 
system considered here consists of the fluid and cells contained in an 
aliquot of volume V )  and if A, and A,, are the total amounts of drug inside 
of the cell and in the fluid milieu of the cell, then: 

A = A, + A,  (Eq. 19) 

Similarly, for the total amount of product in the system: 

P = P, + Po (Eq. 20) 

Throughout this section, all definitions for A apply equally for P .  The 
major chemical species are usually denoted with a capital letter, and the 
subscripting of this component is denoted with small letters. The one 
exception is the definition of specific activity. In this case, the chemical 
species is denoted with a small letter. 

In the external medium, a radiolabeled drug has a specific activity: 

Sao  = Ao*IAo (Eq. 21) 

where A,* is the total amount of labeled drug in the fluid compartment 
of t.he system. If it is assumed that the flux of cold drug and the flux of 
labeled drug are mutually independent, then as the tracer A,* enters the 
cell and becomes A,*, a total amount of drug Ai*/Sao has entered the cell 
from the external milieu of the cell at  a time t .  Thus: 

A, = Ai, + A,*/Sao (Eq. 22) 

where A,, is the total amount of cold endogenous drug inside the cell 
under stationary conditions. 

Before the labeled drug entered the cell, the enzyme that catalyzed the 
reaction of A, into P, was being driven a t  a rate V;, by Ate, The increase 
in A, by an amount A,*/S,, caused the system to be perturbed from Ai,. 
This situation is shown in Fig. 1. Writing the perturbed rate as V,, + 6V 
then gives: 

(Eq. 23) 

(Eq. 24) 

If it is assumed that the endogenous drug level is much larger than the 
amount A,*IS,,, 1 e , A,, >> A,*/S,,,  then the equation becomes: 

V,, + 6V = V , A , , / ( K ,  + A z e )  + KA,*/S, ,  (Eq. 26) 

where: 

K VmI(Km + Ale) (Eq. 27) 

6V = K.4,*/Sa, 

Applying this result to Eq. 17 gives: 

d(A, ,  + A,*/s , , ) /d t  
(Eq. 30) 

where A,, is the total amount of cold precursor in the fluid milieu of the 
cells in the absence of Ao*/Sa, under stationary conditions. Since: 

- - kl (Am + Ao*ISm) - k2(AL, + A,*/S 0" ) - V,, - 6V 

(Eq. 28) 

(Eq. 29) 

dAieldt = kiA,], - kzA;, - Vie 

dA,*ldt  = klA,* - k2Ai* - S,, 6V 

dA,*ldt  = klA,* - (kz  + K)A,*  

(Eq. 31) 

(Eq. 32) 

(Eq. 33) 

then: 

and using Eq. 29 to eliminate 6 V yields: 

Similarly, Eqs. 1, 18, and 5 become: 

dAo*ldt = -klAo* + kzAi* 

dP,*ldt  = -ksPi* + k;P,* + KAi* 

dP,*ldt = -kTP,* + kGP,* 

(Eq. 34) 

(Eq. 35) 

(Eq. 36) 

Closed System Requirement-For a closed system, it is necessary 

(Eq. 37) 

respectively. 

that: 

T* = A* + P* = constant 

where T* is the total amount of label in the system and: 

A* = A,* + A;* (Eq. 38) 

P* = P o *  + P I *  (Eq. 39) 

Adding Eqs. 33 and 34 yields: 

dA*ldt  = -KAi* (Eq. 40) 

and adding Eqs. 35 and 36 gives: 

dP*/d t  = KA,* (Eq. 41) 

But since: 

dT*ldt  = dA*/dt  + dP*/d t  = 0 0%. 42) 

it can be seen that Eqs. 40 and 41 are redundant and really express the 
same condition. For a closed system, therefore, the following set of linear 
differential equations must be solved: 

dAjldt = klA,  - (kz  + K ) A ,  (Eq. 43) 

dPildt = -ksP, + kYP,, + K A ,  (Eq. 44) 

dAldt  = -KAi (Eq. 45) 

which are subject to the constraint that: 

T = A + P  (Eq. 46) 

In Eqs. 43-46, the label * has been omitted since all time-dependent 
variables refer to labeled quantities. In the remainder of this section and 
in those to follow, this will be understood. Since: 

P = P" + P; (Eq. 47) 

A = A,, + A; (Eq. 48) 

and with the constraint of Eq. 46 in Eqs. 47 and 48, it is found that: 

Po = T - A - P,  

A,, = A - A; 

(Eq. 49) 

(Eq. 50) 

Substituting Eqs. 49 and 50 into Eqs. 44 and 43, respectively, yields: 

dA,ldt  = klA - ( k l  + k2 + K ) A ,  

dPildt = k7T - k7A + KA, - ( k e  + k7)P, 

(Eq. 51) 

(Eq. 52) 
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Equations 45, 51, and 52 form a system of linear differential equations 
in three variables, A, A, ,  and P , .  

In the next section, the solutions to this system of equations will be 
examined. One final remark, however, is in order with regard to the ap- 
parent enzyme rate constant K .  Equation 27 can be rewritten as: 

1/K = K,,,/V, + A d V ,  (Eq. 53a) 

so that a plot of l /K LV'TSUS A;, is linear; from such a plot, V,,, and K ,  can 
he determined. Since V ,  = k&,, Eq. 27 can be rewritten as: 

k 
(Eq. 53b) 

Km i- Ate 
so k s  can he determined from a linear plot of K uersus E, if Ai, is kept 
constant and K ,  and A, ,  are known. I t  remains to be seen if A,, and E, 
can be changed experimentally. If these parameters can be varied, then 
it is apparently possihle to determine the fundamental rate parameters 
of'the enzyme catalysis within the intact cell. 

Solutions to Closed System Equations-The following assumptions 
were made to derive the differential equations, Eqs. 45, 51, and 52, for 
the closed system. 

First, it was assumed that the rate of change of the enzyme-substrate 
complex, X ,  is much slower than the rate of change of either A; or Pi 
within the cell; i . ~ . ,  transport of the substrate is much faster than the 
bioconversion of the substrate. This assumption was utilized to obtain 
an algebraic constraint on X (Eq. 9). In this model, the biosynthetic re- 
action is taken to he homogeneous within the cell. 

Next, it was assumed that the endogenous levels of substrate within 
the cells, Ai,, did not change during the experiment. Thus, the cells must 
reach a steady state with respect to the synthesis of the endogenous 
product. In the light of feedback inhibition and other intracellular reg- 
ulatory mechanisms, this assumption seems reasonable when the cells 
are not subject to sudden stress. 

By using this constancy of' A;,  as a steady-state operating point and 
assuming that the total amount of substrate that diffuses into the cells 
from the fluid media, A,/S,,,  is much less than A,,, the enzymatic rate 
of change of the substrate reduces to the linear expression (Eq. 26) with 
respect to its Ai* dependence. The effective linear rate constant for this 
enzyme reaction is given in Eq. 53b. In this derivation, it is implicit that  
only one substrate is involved that can limit the rate of the enzyme re- 
action. However, many biological reactions need a second and, sometimes, 
a third suhstrate. 

Finally, it was assumed that the substrate and the product form a 
closed system such t.hat the conversion of the 14C-label can be assumed 
in the form described by Eqs. 37-39. If there are other routes of loss of 
the 14CC-label, then this conservation relationship cannot hold. 

The initial and the final assumptions provided algebraic constraints 
that reduce the original five-compartment system to the three-com- 
partment system expressed by Eqs. 45,51, and 52. The solutions to this 
system of equations are derived in the Appendix and are: 

K=" E O  

+ (y - 6)(k7 + B)P,(O) - ksKA,(O))  (Eq. 67) 

03s. 68) k7T P, (m)  = - 
ks + k7 

In these expressions, A ( 0 )  and A,(O) are the values of A and A, a t  time 
0; P,(m) is the value of P,  a t  time a.  The expression for A,  can be derived 
from Eqs. 38 and 54 and is given by: 

A,  = (Ab - Atb)e-flt + ( A ,  - A,,)e-Ot (Eq. 69) 

Similarly, P ,  can be derived from Eqs. 37-39 and 54-56. This expression 
is not needed here. 

In the described formulation, all quantities were computed in terms 
of the amount of the substance in a particular compartment for a sample 
of suspension, containing cells and fluid, of volume V .  Volume V can be 
expressed as: 

V =  V , + n V ,  (Eq. 70) 

where n is the number of cells in V,  V ,  is the volume of one cell, and V ,  
is the fluid volume. These equations can be converted to concentration 
units by dividing by the product of the volumes involved. For example, 
Eq. 61 would become, in concentration units: 

($) kl [A(O)]  - p[Al(0) l  

0-0 [A,b] = (Eq. 71) 

where [ ] indicate the concentration of the quantity within the mass 
balance equations, Eqs. 47 and 48, become: 

p = VO[POl + n v , [ P l l  (Eq. 72) 

A = v,[A,1 + nv,L%l (Eq. 73) 

The solutions for A, and A,  given by Eqs. 54 and 69, respectively, tend 
to zero as time tends to infinity. This behavior is expected for the sub- 
strate in the system when the reaction has been completed. The solutions 
for P, and Po, on the other hand, must tend to P,  ( a )  and Po ( a ) ,  respec- 
tively, as t tends to infinity. This means that: 

T = P,(m)  + P o ( = )  (Eq. 74) 
from Eq. 37. Substituting Eq. 74 into Eq. 68 yields: 

Expressing Eq. 756 in terms of concentration units gives: 

(Eq. 756) 

Turi (17) defined the intrinsic partition coefficient K~ of a compound P 
between the cell fraction of n cells, each of volume V,, and the fluid media 
of volume V ,  as the ratio of the concentrations expressed in Eq. 76, 
1.e.: 

Since the relationship between the amounts and the concentrations of 
P,  and Po a t  time m are: 

Pi( , )  = nVi[PL(m)l (Eq. 78) 

P,(m)  = V,[P,(m)I (Eq. 79) 

and with Eqs. 74 and 77-79, it is found that: 

(Eq. 80) 

(Eq. 81)  

(Eq. 82) 

(Eq. 83)  
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Equations 80-83 can be used to determine these asymptotic values of Pi 
and P,, from data independent of the biosynthetic or transport kinet- 
ics. 

Determination of Transport  Parameters-The transport param- 
eters k l ,  k z ,  ks, and k7 can be derived in terms of physicalconstants. The 
expressions for these parameters are: 

3Pp nV; k7 = -- 
a V ,  

(Eq. 87) 

where a is the radius of the cell and Pa, Pp ,  and K~ are the intrinsic per- 
meability and partition coefficients of the drug and product, respectively. 
These parameters are very important because, by suitably arranging the 
experimental situation, they can be determined independently from the 
biosynthetic reaction. Thus, in the simultaneous biosynthetic-transport 
situation, the only parameters that remain to be determined are those 
associated with the enzymatic process. Turi (17) found that when fetal 
bovine serum was used in the medium of the uptake and release transport 
experiments, the binding of many drugs could be accounted for by as- 
suming a linear binding model of the drug to the fetal bovine component 
of the medium. In this way, in the presence of fetal bovine serum, the 
effective permeability, P,,, and the effective partition coefficient, K,,, 

of a drug C are the parameters that are measured experimentally. These 
are related to the intrinsic parameters Pc and K, by the expressions: 

where Pb is the equilibrium serum-drug binding constant. 

(Eq. 89) 

APPENDIX: SOLUTIONS TO BIOCONVERSION- 
TRANSPORT EQUATIONS 

The equations to be solved are 45, 51, and 52. Substituting 7 = kl t 
k 2  + K in Eq. 51 yields: 

dA, ld t  = -?A, + k l A  (Eq. A l )  

Substituting 6 = kg + k7 in Eq. 52 yields: 

dP, /d t  = K A ,  - k7A - 6P, + k7T (Eq. A21 

Taking the Laplace transform of Eqs. A l ,  45, and A2 yields, respective- 
ly: 

(s + ?)a ,  - kla = A,(O) (Eq. A3) 

Ka, + sa = A ( 0 )  (Eq. A4) 

-KQ, + k7a + (S + 6)p ,  = k 7 T l ~  + P,(O) (Eq. A5) 

Since the determinant (det) of the matrix for a,, a, and p ,  is: 

det = (s + 8)(s + n) ( s  t 6) (Eq. A6) 

where a = -112 + ( ~ 1 2 ) ~  - K k l ,  P = 712 - ( ~ 1 2 ) ~  - Kki, afl = K k l ,  y - n 
= 8, and y - fl = a. The solutions for a,, a, and p L  can be found from 
Cramer's rule and are: 

a, = (s + /3)-'(s + a)-'klA(O) + sA,(O) (Eq. A7) 

a = (s + /3)-'(s + a)- I ( s  + y ) A ( O )  - KA,(O) (Eq. A8) 

pi = (S + D)-'(s + o ( ) - ~ ( s  + b)-'Ai(O)Aly - A(0)&3 
+ Pt(0)A33 + (S + P ) - ' ( s  + C Y ) - ~ ( S  + 6)-'s-'k7TAs:3 (Eq. A9) 

where the A,. are the minors of the ijth element of the matrix formed from 
ai, a, and pi .  Taking the inverse transforms yields: 

Ai = A;be+' + Aiae-at (Eq. A10) 

A = Abe-8' + A,e-af  (Eq. A l l )  

Pi = Pi(m)  - F'ibe-@t - P,de-&t - P,=e-"' (Eq. A12) 

LY = y12 + (712)' - Kkl (Eq. A13) 

P = 712 - d(y I2 ) '  - K k i  (Eq. A14) 

y = CY + /3= ki  + k z +  K (Eq. A15) 

6 = k6 + k7 (Eq. A16) 

aAi(0)  - k i A ( 0 )  
f f - P  

A;, F 

otA(0) - K A ( 0 )  
f f - 8  

Ab = 

(Eq. A17) 

(Eq. A18) 

(Eq. A19) 

(Eq. A20) 

(Eq. A21) 

(Eq. A22) 
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